清华大学牛志强团队综述:酶催化、电催化、光催化齐上阵,温和条件下塑料回收与升级再利用

摘要:塑料降解通常需要高温、高压、碱或酸等苛刻条件,导致能源成本高和环境问题。近年来,在温和条件下操作的新技术不断涌现。本文综述了近十年来在温和条件下通过生物、光、化学、生物降解等方法将废塑料转化为高纯度单体或高附加值产品的进展。电催化和低温热催化。首先讨论了塑料的酶解,重点介绍了提高酶热稳定性的酶工程进展。其次,介绍了在室温下将废塑料转化为高附加值燃料和化学品的电催化和光催化方法。具体地说,介绍了电催化和光重整技术在塑料改性方面的研究现状和存在的问题,重点介绍了以氧气或空气为氧化剂的塑料光催化氧化合成化工原料的研究进展,综述了近年来塑料低温热催化再生与改性的研究进展,并从催化剂的合理设计,催化系统的优化和可扩展性,以及经济可行性。

【作者简介】


牛 志 强
清华大学化学工程系副教授。主要从事塑料的催化循环与可再生能源的催化转化。学术成果发表在Nature Materials, Nature Sustainability, Nature Communications, Journal of the American Chemical Society, Angewandte Chemie International Edition, Chemical Reviews, Nano Letters, ACS Nano等期刊,受邀撰写相关研究领域综述5篇,申请PCT专利2件。
EDITOR
编者按
该综述系统梳理了近年来全球在温和条件下回收塑料方面的核心突破,涵盖了酶、电、光、热四大方向,既关注技术路径,也评估了产业化可能性。文章特别强调了环保性、能效和经济可行性三个关键指标,内容翔实,思路清晰。对塑料循环行业的从业者而言,这不仅是前沿科技的“菜单”,也可能是未来投资布局的“路线图”。尤其是对中国这样塑料产销大国而言,这些技术值得大力引入和试点。未来,谁掌握了“低碳、高效、闭环”的塑料回收技术,谁就掌握了再生资源产业的“下一个风口”。
李 编 博士



图1 废旧塑料的回收和升级循环:(a)传统的化学工艺和 (b)温和条件下的新兴先进技术,包括酶催化,电催化,低温热催化。
— 1 —
生物催化:让微生物和酶“吃掉”塑料

图2 (a)坂井硬蜱201-F6诱导PET膜降解过程中的失重 (b)PET膜水解过程中各种水解酶的活性 (c)在ISF6_4831蛋白作用下PET膜释放产物的高效液相色谱图 (d)预测坂井I. sakaiensis降解TPA的途径 (e)用于聚合物降解的包埋酶的生物催化 (f)含有约0.1重量%脂肪酶的熔融挤出的PCL-RHP-BC-脂肪酶细丝在40 °C缓冲液中在36小时内几乎完全转化为小分子的降解 (g)含酶的聚(己内酯)(PCL)(左)和聚(乳酸)(PLA)(右)在ASTM标准堆肥。

天然酶的热稳定性差,难以处理高结晶度塑料。通过基因编辑和机器学习优化,科学家开发出FAST-PETase酶,可在50℃下24小时内分解未处理的PET瓶(图4i)。这一技术已进入闭环回收试验,再生PET性能与原生材料相当。


图5 (a)通过串联化学氧化和生物转化对混合塑料废物进行升级循环的概念 (b)PS、HDPE和PET衍生的含氧中间体生物功能的工程代谢途径,以生成β-酮己二酸酯或聚羟基链烷酸酯
— 2 —
电催化:用“电”驱动塑料升级
2.1 从PET到甲酸和氢气
中国团队开发钴镍磷催化剂,在碱性溶液中将PET水解产物乙二醇电氧化为甲酸,同时阴极产氢(图6a)。该工艺在300 mA/cm²电流密度下,每吨废PET可净赚350美元(图6c)。
创新案例:将PET水解液与CO₂还原耦合,仅需1.55V电压即可同步生产甲酸,能效提升20%(图6g)。
聚氯乙烯(PVC)因含氯难以回收。美国团队利用电化学脱氯反应,将PVC中的氯转化为氯代芳烃(图7d),同时分离混合塑料中的PET、PE等成分,为低值塑料高值化开辟新路。

图6 (a)电催化PET升级循环为商品化学品和H2燃料 (b)法拉第效率和生产率作为CoNi 0.25 P/NF上EG氧化的电流密度的函数 (c)技术经济分析(TEA) (d)使用Pd/NF作为阳极将PET电转化为高附加值化学品和H2燃料 (e)阳极PET水解物和阴极CO2向甲酸的同时电化学转化 (f)电解后含有PET水解物的电解质的13C和1H-NMR光谱 (g)SnO2||NiCo2O4的线性扫描伏安曲线 (h)在不同施加的电池电压下,NiCo2O4/CFP用于PET水解产物氧化和SnO2/CC用于CO2还原反应以产生甲酸的法拉第效率。

— 3 —
光催化:阳光下的塑料变身术
英国团队用CdS量子点催化剂,在可见光下将PET、PLA等塑料转化为氢气和小分子有机物(图8a)。升级版“人工树叶”装置利用钙钛矿材料,将PET乙二醇氧化为乙醇酸,产率提升千倍(图9c)。
中国科学家通过铌氧化物光催化剂,将聚乙烯(PE)等塑料先氧化为CO₂,再耦合为乙酸(图10d)。新型钴镓催化剂则直接将塑料转化为合成气(CO+H₂),为化工原料提供绿色来源(图10e)。
痛点:多数技术需强碱预处理。2022年,新加坡团队开发钒基均相催化剂,无需预处理即可在常温下将PE转化为甲酸(图11a),但需85℃溶解塑料。

图8 (a)在碱性水溶液中使用CdS/CdOx量子点(QD)光催化剂的聚合物光重整图 (b)在模拟太阳光下使用CdS/CdOx QD(1 nmol)将聚合物光重整为H2 (c)在模拟太阳光下使用CdS/CdOx QD(1 nmol)将PET瓶长期光重整为H2 (d)使用CNx|Ni2P光催化剂的聚合物光重整的示意图 (e)用于光重整的25 cm 2光反应器的照片 (f)在理想条件下放大的长期H2释放(100 mW cm−2,纯去离子水)和最差情况(20 mW cm−2,海水)场景 (g)PET水解和升级循环用于化学品生产的示意图,与H2产生相结合 (h)乙二醇(EG)衍生物的形成机理探讨 (i)EG衍生物的产率和 (j)中间体选择性

图9 光电化学(PEC)废物重整的概述

图10 (a)在模拟的自然环境条件下按照设计的两步途径将各种废塑料转化为C2燃料的示意图 (b)在纯聚乙烯(PE)、聚丙烯(PP)、和聚氯乙烯(PVC)在Nb2O5原子层 (d)建议的两个步骤C-模拟自然环境条件下纯PE到CH3COOH的C键断裂和偶联机理 (e)在温和条件下,各种废塑料在Co-Ga2O3纳米片上转化为合成气的示意图 (f)商业PE塑料袋(g)商业PP塑料盒 (h)商业PET塑料瓶

图11 (a)塑料在V催化剂上的转化方案 (b)V基光催化剂的结构 (c)聚苯乙烯(PS)在FeCl3上光氧化成苯甲酰基产物的示意图 (d)流动中的商业PS降解 (e)链断裂和苯甲酰基产物生成的主要途径的建议机制 (f)商业PS在pTsOH·H2O上光氧化成苯甲酰基产物的示意图 (g)的氢原子转移反应的计算研究,1,3-二苯基丁烷7与各种氧物种

— 4 —
低温热催化:节能高效的化学魔法
美国团队利用铱-铼双催化剂,在175℃下通过“交叉烷烃复分解”将HDPE瓶分解为C6-C10烷烃燃油(图13b)。中国科学家则用离子液体催化剂,在70℃下将PE/PP转化为高纯度异构烷烃(图13f)。
中国团队开发钌催化剂,在140℃下将PLA塑料转化为丙氨酸,选择性达94%(图13c)。无需金属的离子液体催化体系,还能将PLA餐盒升级为高值乳酰胺(图13e)。
图13 (a)通过CAM工艺的PE降解途径 (b)各种消费后PE塑料废物在175 °C下降解为油和蜡 (c)Ru/TiO2催化剂上PLA胺化的建议反应机理 (d)通过不同的方法将PLA转化为化学品,D代表PLA氨解的这项工作 (e)[N4444][Lac]/H2O-PLA与各种苯胺的催化氨解 (f)在离子液体[C4Py]Cl-AlCl3上在70°C下将LDPE和iC5一锅催化成液体烷烃

图14 (a)在200°C和0.3MPa H2下,PET在各种催化剂上的转化率 (b)二苯甲烷在Nb2O5和HZSM-5上吸附的优化结构 (c)Ru/Nb2O5上催化C-O/C-C裂解的建议机制 (d)通过Cl-转移系统将废PVC升级为有机氯化物流的示意图 (e)在180 °C下不同催化剂的催化性能的比较 (f)PVC的Cl-利用效率 (g)Cl-转移反应的可能催化机理 (h)Cl-转移过程的初步质量平衡分析

图15 双核催化剂用于PET降解
— 5 —
未来与挑战:从实验室到工厂的最后一公里
催化剂成本:贵金属催化剂(如钌、铱)限制经济性,需开发廉价替代材料。 混合塑料处理:现有技术多针对单一塑料,需开发通用型催化体系。 工艺集成:预处理、反应、产物分离需一体化设计,降低能耗。
未来趋势:人工智能辅助酶设计、等离子体增强光催化、模块化电化学反应器,将成为技术突破的关键方向。
本篇文章来源于微信公众号:废塑料新观察
推荐文章
-
第16次北美(美国、墨西哥) 塑料回收再生行业考察 开始报名了!!! 随着塑料废弃物问题日益引起公众关注,物理与化学回收技术逐渐成为循环经济讨论的焦点。美国塑料公约(U.S. Plastics Pact)于2025年11月发布立场文件,明确表示支持在严格的管理框架下,将物理与化学回收作为塑料包装循环经济的补充性解决方案,而非替代减量、重复使用或机械回收的手段。 美国塑料公约(U.S. Plastics Pact)是一项旨在推动美国塑料包装可持续发展的行业倡议,于2020年正式启动,是艾伦·麦克阿瑟基金会全球塑料公约网络的重要组成部分 该文件表示,这些技术不应被神化为“万能解药”,也不应被全盘否定,而应基于科学与系统思维,负责任地整合到更广泛的废物管理体系中。以下内容摘自该立场文件,如需阅读立场文件原文,可识别二维码: — 1 —什么是物理回收与化学回收?根据国际标准化组织(ISO)正在制定的术语框架 ISO/CD 15270-1.3,回收技术可分为以下四类: 机械回收:传统方式,通过清洗、破碎、挤出等物理过程处理塑料,不改变聚合物结构。 物理...
-
塑料可回收再生设计(Design for Recycling, DfR)作为推动循环经济的关键技术体系,在全球范围内已形成较为成熟的标准与实践路径。然而,中国在这一领域的发展尚处于初级阶段,专业研究人员稀缺,部分探索甚至陷入误区。 本文以双易设计(Double E Design)标准为例,结合国际主流体系(如APR、RecyClass等)进行对比,剖析其存在的根本性问题,并呼吁行业回归科学、透明的技术路径。个体陷入误区,仅仅是个体成长过程,但是作为标准编制的专业机构,拿自己错误的认知去影响行业,尤其是给中国刚刚还在发展期初的DfR体系,造成混乱和混淆,这个就不对了,这是本文发布的初衷。 以下从13个可回收再生设计关键维度对比双易与APR、RecyClass、CPRRA-DfR的差异,系统分析其内在技术缺陷与认知错误: 注:该领域过于细分,加上有意无意的混淆和模糊,非长期研究DfR的研究者很难发现其内在缺陷和错误。 由以上技术细节的对比分析,我们发现了3个被忽视的事实: — 1 — 宣称“国际对标”,实为自我否定 双易设计在宣传中存在显著的前后矛盾。...
-
随着全球塑料污染治理的加速发展,“以设计为导向”正成为塑料包装治理的主流趋势。欧盟已明确要求到 2030 年,所有上市包装必须具备“设计可回收”的能力。联合国塑料公约谈判也将“优化塑料产品设计”列为塑料污染的核心治理手段之一。在中国,“十四五” 塑料污染治理行动方案明确提出 “积极推行塑料制品绿色设计”,塑料包装相关设计标准的制定也在持续提速。— 1 —全球趋势:设计正在成为塑料包装管理的“硬规定”越来越多国家将“设计可回收”纳入法律体系。以欧盟为例,2024 年通过的《包装与包装废弃物法规》(PPWR)规定,到 2030 年,所有上市包装必须具备“设计可回收”能力;2035 年起,包装是否能在现实条件下实现“规模化回收”也将纳入强制评估。这一机制首次将设计与回收体系协同纳入监管框架。随着塑料污染治理和循环经济进程的加快,绿色设计正逐渐成为中国“双碳”战略与产业绿色转型的重要抓手。在中国国家标准体系优化过程中,绿色、低碳与资源高效利用被明确为核心方向。目前绿色产品标准体系以资源、能源、环境、产品品质与低碳五大维...





