不到1小时,尼龙塑料彻底溶解?全新常温技术颠覆传统高温分解

作者: 废塑料新观察
发布于: 2025-05-29 09:36
分类: 行业资讯

摘要:聚酰胺(PA,尼龙)是一种普遍存在的高性能塑料,广泛应用于各种应用中。它们对许多常见溶剂的高耐受性和在强酸或强碱中水解的倾向对低排放材料回收(即资源分离和回收)造成了主要障碍。在本研究中,首次详细研究了聚酰胺溶解的分子机理,发现在甲酸中引入弱氢键助溶剂可以有效地调节溶剂-溶剂和溶剂-聚合物相互作用,大大加速了常见的室温溶解动力学,(短链)聚酰胺,如PA6和PA66,以及长链和半芳香族品种。回收的聚合物在其化学结构或性能方面没有变化,并且足够的选择性允许填料如短纤维和长纤维,无机纳米颗粒,金属,和其它混合的聚合物相以高效率(>95%)沿着回收,同时所有溶剂再循环(>98%)。这一新方法有可能使聚酰胺回收更具可持续性和经济性,因为它减少了从汽车和电气部件、纺织品等中分离和回收各种组成材料所需的能源投入和二氧化碳排放。

— 1

研究背景

尼龙因其耐高温、强度大、耐化学腐蚀等特性,被广泛用于汽车、电器、纺织、渔网等行业,年产量达800万吨,全球市场规模超400亿美元。然而,其化学结构稳定,难以被一般溶剂溶解,且常与玻璃纤维、金属等高附加值材料复合使用,进一步加大了回收难度。
传统回收方法有三种:
1. 机械回收:直接粉碎再造粒,操作简单但性能大打折扣;
2. 化学回收:高温裂解再重聚,产品质量好,但能耗高达180~300℃;
3. 物理回收(溶解/沉淀):较温和,但受限于溶剂选择,需高温,溶解速度慢。
因此,开发一种常温、快速、低排放的溶解-回收新技术成了学界难题。
— 2 

研究方法

本研究的核心在于:找到了加快尼龙在溶剂中“常温溶解”的办法。主要思路如下:

1. 采用“共溶剂策略”

使用“甲酸(FA)+弱氢键供体溶剂”组合,比如FA与二氯甲烷(DCM)按1:1比例混合。

组合溶剂的特点:

  • FA能溶解短链尼龙(如PA6、PA66),但速度慢(需数小时至一天);

  • 加入DCM后,不仅不影响甲酸的溶解力,反而打乱了FA之间的强氢键结构,更好地与尼龙分子结合;

  • 同时,DCM对尼龙分子中的“亚甲基链”表现出很强的亲和性(范德华力强),促进链段解缠与扩散;

  • 结果是:常温下,1小时以内即可完全溶解尼龙,且无需搅拌或加热!

2. 分子机制验证

研究者通过红外光谱和量子化学计算发现,弱氢键的溶剂组合能有效破坏尼龙晶体内原本稳定的氢键,促进“解晶+溶解”全过程。

3. 应用验证

无论是短链(PA6、PA66)、长链(PA11、PA12)还是半芳香族尼龙(PA6I/6T),在该溶剂体系下均能快速溶解。甚至实际的复合材料——如含碳纤维、玻璃纤维、铜粉的电子废料——也能被精准分离回收

— 3 

研究结

1. 尼龙原样回收:无结构降解、无力学性能损失

再生后的PA6和PA66在分子量、红外特征、结晶度及拉伸性能上几乎和原始材料一致(回收率高达99.2%)。

2. 溶剂可循环使用:>98%回收率

FA和DCM等溶剂经蒸馏回收后基本无损耗,可循环使用,降低成本。

3. 副材料高效回收

玻璃纤维、碳纤维、金属粒子等“填料”均可通过简单的离心沉淀方式回收,表面无损伤。

4. 能耗与碳排放大幅降低

  • 相比传统回收工艺(如化学裂解),碳排减低80%

  • 初步估算每公斤PA6的回收只产生0.8公斤CO₂当量,能耗仅16 MJ/kg。

5. 典型应用场景

(1)废渔网再利用:从渔网中回收PA6和铅颗粒,并通过一锅法制成导热性能优良的碳纳米管复合材料;

(2)废旧纺织物升级:从旧衣服中提取尼龙与碳纤维叠层制成轻质复合板,性能超过85%原始产品

(3)汽车/电子拆解:可将复杂部件中的塑料、金属、阻燃剂等快速分离,实现“全组件回收”

— 4

图文解析

图1.(a)聚酰胺(PA)组件和产品,从结构/电气复合材料到纺织品。高价值组件通常包含与有价值的次级材料混合的聚酰胺;(b)传统的基于溶解的方法涉及通过溶解度参数选择溶剂(例如,HSP)理论并且需要高温和相对长的处理时间,(c)这项工作表明,共溶剂策略加速了PA在室温下在甲酸中的溶解,导致能源消耗和总体碳足迹的前所未有的减少

图2. (a)照片和(B)室温下溶解的PA 6粒料的质量变化测量(无搅拌);(c)具有不同固体浓度和共溶剂分数的PA 6溶液的表观粘度;(d)晶体溶解期间固-液界面的示意图,其中km是根据Noyes-Whitney模型的跨越边界层(厚度lb)的传质的量度;(e)共溶剂分数对传质系数km和总溶解时间的影响

图3. (a)FA(FF)、DCM(CC)和FA/DCM(FC)二聚体的分子静电势(MEP)、结合能(kJ/mol)和H-键长(OJ);(b)FA与不同助溶剂级分(fDCM)的FTIR光谱,以及(c)FA的开放(FFo)和封闭(FFc)以及单体(F)形式的放大羰基区域(具有去卷积峰),(d)对于不同的共溶剂级分,代表(c)中所示的每种相互作用的羰基谱带的积分面积的变化;(e)代表a相晶体和溶剂相互作用位点示意图的氢键PA6低聚物的结构和MEP;(f)FA和DCM在每个结合位点的近似结合能;(g)总溶剂化能DGsolv和近似氢键和vdW分量

图4. (a)共溶剂增强的聚酰胺溶解动力学的拟议机制的图示:弱氢键溶剂破坏了强FA网络,增加了溶剂-聚合物相互作用,加速了脱羧过程。在纯FA中,溶剂-溶剂相互作用(FF)和溶剂-酰胺相互作用(SP)较强,而溶剂-亚甲基相互作用(SP)较弱,相比之下,DCM调节H-键合的溶剂网络以减弱溶剂-溶剂相互作用(FC),而在酰胺和亚甲基位点处的SP都是强的;(b)观察到的溶解速率(每单位表面积每单位时间PA链的摩尔数)与溶剂-聚合物相互作用(溶剂化能)和溶剂-共溶剂相互作用之间的差之间的连续关系

图5. (a)基于溶解的再循环方案示意图,附有具体示例条件下的照片。在不需要搅拌的情况下,在室温下将两种或更多种第二材料(具有或不具有第二材料,SM)溶解在共溶剂体系中,产生PA溶液,其可以在沉淀、洗涤和干燥之前分离成SM和PA。共溶剂和反溶剂允许它们通过顺序蒸发完全回收;(b)在一个溶解/再生循环之前和之后,PA6、PA66和PPA(PA6I/6T)的分子量(Mw)和多分散指数(PDI);(c)原始和再生(纯)PA 6的FTIR光谱,(d)DSC扫描,和(e)拉伸应力-应变曲线

图6. (a)各种PA基模塑料的RT溶解:PA6、PA66、PA11、PA12、PA6I/6T、碳纤维(CF)、玻璃纤维(GF)、纳米粘土(云母、绢云母);符号表示复合物的种类,插图是溶液的照片(b)由全球变暖潜能值度量描述的碳足迹,(全球升温潜能值,千克CO2当量/千克材料)和一次能源需求不同回收方法的纯PA6(PED,兆焦耳/公斤材料)(c)从PA基复合材料中回收的碳纤维和玻璃纤维的全球升温潜能值和压力释放值;插图是(b)中GF误差条的放大图,(c)如果溶剂回收效率降低,则代表保守值;(d)将基于共溶剂的溶解方法应用于实际的汽车和电气部件:在原始状态下,从模型和真实的成分中有效地回收了通常与PA一起使用的SM(玻璃纤维、铜、PI、阻燃剂)

图7.(a)功能复合材料的快速、RT溶解/分离和制造:将暴露于人工海水中3个月的渔网在室温下在共溶剂体系中快速溶解并分离以回收PA6、PE和Pb,然后通过一锅法溶液混合和注射成型分散碳纳米管(CNT)以制造rPA6/CNT试样;(b)拉伸行为和(c)回收/升级循环的PA6的热导率;(d)回收/升级循环的PA6材料的性能总结;(e)rPA6/CNT的多功能性能(在强度和导热性方面)与类似报道的复合材料相比(f)结构复合材料的快速、RT溶解/分离和制造:含PA6和聚氨酯的废旧纺织品(与染料一起被DMSO沿着除去)在室温下迅速溶解在共溶剂体系中并沉淀以回收PA6,然后使用共溶剂体系与预先回收的编织碳纤维(rCF)层压;碳纤维层压板和碳纳米管纳米复合材料的碳足迹和经济分析:(一)全球升温潜能值,(j)PED,和(k)MSP

— 5

总结

该研究首次提出以“弱氢键调控共溶剂”实现常温快速溶解尼龙的新策略,彻底打破了以往“高温溶解”的技术瓶颈。不仅溶解速度提高10倍以上,还大幅降低能耗和碳排,兼顾了效率、环保与经济性。与昂贵、毒性大的氟化溶剂相比,甲酸+二氯甲烷体系成本更低、操作更安全、环境适应性更强。更重要的是,该策略具有极强的通用性,适配多种尼龙和填充材料,在面对复杂混合废料时也可“有的放矢”地精准分离。这为整个废塑料回收行业提供了一种可规模化推广的新思路。随着未来绿色溶剂的加入(如生物基溶剂),这种“智能共溶剂溶解”方案有望应用到更多高值塑料的回收上,成为实现碳中和目标的重要技术抓手


(文章来源:Angewandte Chemie International Edition点击阅读原文可查看原始文献)

免责声明:本公众号旨在传播行业新闻和科研成果,促进塑料循环利用领域的交流,不用做任何商业用途。若涉及版权问题,请与我们联系,我们将及时进行修改或删除。


— 6 

Chem-Replas2025第三届废塑料化学循环论坛(热裂解方向、溶解、非PET解聚)

主题:成熟的技术与成功的项目
2025年9月3-5日·浙江宁波

点击上方海报,提前注册观众,锁定论坛名额

图片
信息服务产品销售

识别二维码,即刻订阅

✅ 月刊:1期/月深度专题,打造行业前瞻智库,引领废塑料行业战略新方向!
图片
图片
图片
✅ 简报:对行业热点、焦点、关键问题进行深入研究,围绕政策、市场、技术、案例等多个维度展开



本篇文章来源于微信公众号:废塑料新观察
分享

推荐文章

  • 2025-10-20
    废塑料新观察
    扫描上方二维码,提交建议10月17日,加州总检察长罗布·邦塔宣布,对三家塑料袋制造商提起诉讼。由于该州回收系统实际上无法处理塑料袋,这些公司将其产品标注为“可回收”的行为构成了虚假宣传。与此同时,另有四家公司就类似指控达成和解,此类误导性营销直接加剧了塑料污染。图:加州总检察长罗布·邦塔 (Rob Bonta)— 1 —加州起诉3家,和解4家塑料袋制造商 邦塔17日正式起诉 Novolex Holdings LLC(全球最大食品包装生产商之一)、Inteplast Group Corp 与 Mettler Packaging LLC,这些公司在袋子上贴上“追箭头”符号和其他误导性可回收性声明,指控其违反《环境营销声明法》、《虚假广告法》和《不正当竞争法》。检方指出,这些公司无法提供任何证据,证明其在加州贩售的塑料袋有被实际回收。与此同时,加州与 Revolution、Metro Poly、PreZero 以及 API 四家公司达成和解。根据协议,这四家公司将停止在加州贩售塑料袋,并支付总计超过170万美元,其中包括110万美元罚款与63.6万美元的律师与诉讼费用。邦塔在记者会上表示:"这些公...
  • 2025-10-20
    废塑料新观察
    杨宏训(伟易达电子实业有限公司 注塑部门 品质总管)个人简介伟易达电子实业有限公司隶属于上市跨国集团伟易达(HKSE:303)。集团成立于1976年,在14个国家及地区设有办事处,于中国香港、中国大陆、德国、美国、加拿大设有产品研究及开发中心。伟易达着力投资产品研究及开发,旗下拥有电子学习产品、电讯产品及承包生产服务,40年产品品质坚持,使伟易达获业界和消费者高度认可和信赖。ChinaReplas报告主题PIR材料的精益管理报告精选在制造业高速发展的今天,如何高效、环保地处理生产过程中产生的废料,成为企业可持续发展的重要课题。伟易达电子实业有限公司作为全球知名的电子学习产品、电讯产品及承包生产服务供应商,始终秉持“品质与环保并重”的理念,在注塑生产过程中实现了废料的精细化分类与高效回收利用,树立了行业绿色管理的新典范。在注塑生产过程中,伟易达在注塑生产过程中将废料分为三类,并分别采取科学合理的回收方式:1. 机边水口料:即时回收,高效利用通过机械手将产品与水口料一同吸出并自动分离,水口料直接落入水口机进行粉碎。根...
  • 2025-10-20
    废塑料新观察
    扫描上方二维码,提交建议传统的回收方法在处理复杂、受污染或多材料混合的塑料流时往往效果有限。随着欧盟大力推进循环经济,溶解回收作为一种有前景的解决方案,正逐渐受到重视。在欧盟废物管理层级框架下,溶解回收被归类为物理回收,直接助力塑料循环性。物理回收的核心优势是保持聚合物链完整,使这一高价值工程材料可重新制备利用。近日,欧洲塑料回收协会(Plastics Recyclers Europe)发布了溶解回收白皮书,从技术原理、实际应用、效益与考量、政策框架等维度,客观梳理溶解回收技术的核心价值与发展路径。如需全文,请扫描下方二维码获取:— 1 —两种工艺类型 溶解回收是一种利用溶剂对塑料废物中的聚合物进行物理分离的回收技术。该技术不涉及化学反应,能够保持聚合物链的完整,并通过溶剂的重复使用实现高效纯化。 (1)聚合物定向溶解提纯(主流工艺) 利用聚合物在溶剂中溶解度的差异,从均质混合物(如相容聚合物共混物)或非均质混合物(如复合材料、多层材料)中选择性溶解目标聚合物,其余成分不溶解,再通过过滤等方式分离,最终得到高纯度目...
  • toolbar
    联系电话:010-62665052
  • toolbar
    联系邮箱:huyang@gjjy55.wecom.work
  • toolbar
    toolbar
  • toolbar
    返回顶部