大子刊 Nature Chemistry丨能取代聚乙烯的新材料,可反复回炉再生!

作者: 废塑料新观察
发布于: 2025-04-23 09:44

摘要:随着全球塑料污染问题愈发严峻,开发可降解、可回收的新型材料成为化学和材料科学的焦点。本文综述了一项突破性研究:研究者基于植物油提取的长链二醇,借助地壳丰富的锰催化剂,成功合成出一类聚乙烯(PE)类材料,并首次实现了其高效的闭环化学回收。该体系材料不仅具备与传统高密度聚乙烯(HDPE)和线性低密度聚乙烯(LLDPE)相似甚至更优的力学性能,而且能在不受常规染料、添加剂干扰的条件下实现多次高收率回收。研究从单体设计、催化聚合、材料性能调控,到闭环回收流程做了系统性探索,为构建可持续塑料循环经济奠定了坚实的化学基础。



EDITOR

编者按


本研究为塑料循环经济提供了一条真正可实现闭环化学回收的路径。从单体绿色合成、结构调控、性能评估到高效回收,每一步都体现出对“绿色、高性能、可持续”材料体系的深刻理解与实践。未来,若能进一步提升其高温性能、催化效率并实现产业化放大,将有望真正推动“无塑社会”的到来。该材料最大的亮点在于“闭环回收”与“绿色合成”并重,具备替代现有聚乙烯类材料的潜力。其不足之处主要在于软化点偏低,不适合高温环境使用,催化剂效率和成本虽优于贵金属,但仍需优化。

李 编  博士

高分子物理与化学专业


进入废塑料化学循环领域4年,专注PET、PE、UPR等化学回收

图1 从生物基线性二醇和支链二醇聚合得到具有可调性能的PE类材料的催化闭环回收概述。

自上世纪中叶以来,聚烯烃类塑料(如HDPE、LLDPE)因其优异的物理性能与成本优势迅速占领全球市场,成为年产量最大的高分子材料。然而,其固有的化学惰性,使其极难自然降解或高效回收,造成严重的“白色污染”与微塑料问题。

现有回收方式如机械回收、裂解回收(如热解、蒸汽裂解)或高温催化裂解,不仅能耗大、选择性差,还可能产生新污染物。更先进的化学回收策略多依赖贵金属催化剂(如Ru、Rh等),制备工艺复杂、原料成本高,难以规模化应用。

因此,开发一种来源于可再生资源、结构接近聚乙烯、且能闭环化学回收的新型聚合物,是实现绿色塑料经济的关键。

表1  PE类聚合物的特性

— 1 

研究亮点概述

本文提出了一种以可再生植物油为原料、使用地壳丰富金属锰催化合成的新型聚乙烯类材料(PE-like polymer),通过“无受体脱氢聚合”(ADP)手段形成高分子,并首次实现:
  • 在200°C以下实现高效脱氢聚合;
  • 材料具有高度可调的力学性能,从热塑型到弹性体均可覆盖;
  • 可在存在市售染料、添加剂、商用塑料杂质等条件下实现>95%的闭环化学回收;
  • 可通过注塑加工实现材料形态和用途的多样性。

图2  聚合物的性质可在不同的范围内调节

— 2 

研究内容与分析

1. 单体设计与绿色合成

研究选用天然脂肪酸(如橄榄油中的油酸)为原料,通过油烯交联与氢化反应,分别制得线性单体M1与不饱和单体M2,并通过“硫醇-烯”点击反应衍生出多个具有不同支链长度和结构的单体(M3-M6),构建了具有良好模块性的单体平台。
这些单体均含有二醇官能团,可用于ADP聚合,且转化率均在95%以上,合成绿色、高效、成本低廉。

2. 替代Ru的锰催化体系

传统的ADP反应往往依赖于钌等贵金属催化剂。本文首次系统比较了Fe、Co、Mn等非贵金属催化剂活性,发现Mn-I配合物表现出最优转化率与聚合度,聚合产物的数均分子量达67.9–185.1 kDa,且分散度较小(<1.76),显示出良好的聚合控制能力。

3. 材料结构与性能调控

通过调节线性单体M1与支链单体M3的比例,作者合成出一系列结晶度、弹性、粘附性差异显著的聚合物。部分关键性能如下:

  • 热分解温度(Td5)达395°C,接近HDPE(431°C);

  • 拉伸强度与断裂伸长率优于商业PE材料;

  • Toughness高达180 MJ/m³,高于多数工程塑料;

  • 即便添加紫外吸收剂、抗氧剂等添加物,也不影响其回收与力学性能。

图3   聚乙烯类材料的催化回收

4. 金属表面粘附性测试

受硫醚基团强金属亲和力启发,研究者对比不同支链结构下的金属表面附着强度,发现含硫支链(如PE-18-S6-20)对不锈钢、玻璃等材料表现出5.0 MPa的剪切强度,媲美市售强力胶J-B Kwik(5.0 MPa)。

5. 闭环回收流程验证

在温和氢气氛围(140°C, 40 bar)下,催化剂Mn-I可将聚合物完全转化为起始二醇单体,回收率>95%,即使在混合塑料废弃物中也能实现高选择性回收。

更重要的是,材料可多轮“聚合-回收-再聚合”循环,且回收后的材料力学性能无明显衰减,具备工业化可行性。

(文章来源:Nature Chemistry点击阅读原文可查看原始文献)

免责声明:本公众号旨在传播行业新闻和科研成果,促进塑料循环利用领域的交流,不用做任何商业用途。若涉及版权问题,请与我们联系,我们将及时进行修改或删除。

图片
信息咨询,老朋友请联系工作人员,新朋友请扫码咨询
废塑料新观察|解锁深度价值

日版/周报/月刊,即刻订阅

✅ 日版:早6/8点推送,快速掌握行业动态

✅ 周报:周日/周一发布,梳理一周大事,洞察趋势

image.png

image.png

✅ 月刊:1期/月深度专题,打造行业前瞻智库

2025年1月刊

2025年2月刊



本篇文章来源于微信公众号:废塑料新观察
分享

推荐文章

  • 2025-11-28
    废塑料新观察
    第16次北美(美国、墨西哥) 塑料回收再生行业考察    开始报名了!!! 随着塑料废弃物问题日益引起公众关注,物理与化学回收技术逐渐成为循环经济讨论的焦点。美国塑料公约(U.S. Plastics Pact)于2025年11月发布立场文件,明确表示支持在严格的管理框架下,将物理与化学回收作为塑料包装循环经济的补充性解决方案,而非替代减量、重复使用或机械回收的手段。 美国塑料公约(U.S. Plastics Pact)是一项旨在推动美国塑料包装可持续发展的行业倡议,于2020年正式启动,是艾伦·麦克阿瑟基金会全球塑料公约网络的重要组成部分 该文件表示,这些技术不应被神化为“万能解药”,也不应被全盘否定,而应基于科学与系统思维,负责任地整合到更广泛的废物管理体系中。以下内容摘自该立场文件,如需阅读立场文件原文,可识别二维码: — 1 —什么是物理回收与化学回收?根据国际标准化组织(ISO)正在制定的术语框架 ISO/CD 15270-1.3,回收技术可分为以下四类: 机械回收:传统方式,通过清洗、破碎、挤出等物理过程处理塑料,不改变聚合物结构。 物理...
  • 2025-11-28
    废塑料新观察
    塑料可回收再生设计(Design for Recycling, DfR)作为推动循环经济的关键技术体系,在全球范围内已形成较为成熟的标准与实践路径。然而,中国在这一领域的发展尚处于初级阶段,专业研究人员稀缺,部分探索甚至陷入误区。 本文以双易设计(Double E Design)标准为例,结合国际主流体系(如APR、RecyClass等)进行对比,剖析其存在的根本性问题,并呼吁行业回归科学、透明的技术路径。个体陷入误区,仅仅是个体成长过程,但是作为标准编制的专业机构,拿自己错误的认知去影响行业,尤其是给中国刚刚还在发展期初的DfR体系,造成混乱和混淆,这个就不对了,这是本文发布的初衷。 以下从13个可回收再生设计关键维度对比双易与APR、RecyClass、CPRRA-DfR的差异,系统分析其内在技术缺陷与认知错误: 注:该领域过于细分,加上有意无意的混淆和模糊,非长期研究DfR的研究者很难发现其内在缺陷和错误。 由以上技术细节的对比分析,我们发现了3个被忽视的事实: — 1 — 宣称“国际对标”,实为自我否定 双易设计在宣传中存在显著的前后矛盾。...
  • 2025-11-28
    废塑料新观察
    随着全球塑料污染治理的加速发展,“以设计为导向”正成为塑料包装治理的主流趋势。欧盟已明确要求到 2030 年,所有上市包装必须具备“设计可回收”的能力。联合国塑料公约谈判也将“优化塑料产品设计”列为塑料污染的核心治理手段之一。在中国,“十四五” 塑料污染治理行动方案明确提出 “积极推行塑料制品绿色设计”,塑料包装相关设计标准的制定也在持续提速。— 1 —全球趋势:设计正在成为塑料包装管理的“硬规定”越来越多国家将“设计可回收”纳入法律体系。以欧盟为例,2024 年通过的《包装与包装废弃物法规》(PPWR)规定,到 2030 年,所有上市包装必须具备“设计可回收”能力;2035 年起,包装是否能在现实条件下实现“规模化回收”也将纳入强制评估。这一机制首次将设计与回收体系协同纳入监管框架。随着塑料污染治理和循环经济进程的加快,绿色设计正逐渐成为中国“双碳”战略与产业绿色转型的重要抓手。在中国国家标准体系优化过程中,绿色、低碳与资源高效利用被明确为核心方向。目前绿色产品标准体系以资源、能源、环境、产品品质与低碳五大维...
  • toolbar
    联系电话:010-62665052
  • toolbar
    联系邮箱:huyang@gjjy55.wecom.work
  • toolbar
    toolbar
  • toolbar
    返回顶部